A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Détail de l'auteur
Auteur Carlos Simpson |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Asymptotic behavior of monodromy / Carlos Simpson (1991)
Titre : Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface Type de document : bibliographie Auteurs : Carlos Simpson, Auteur Editeur : Berlin : Springer-Verlag Année de publication : 1991 Collection : Lecture Note in Mathematics, ISSN 0075-8434 num. 1502 Importance : 139 p. ISBN/ISSN/EAN : 978-3-540-55009-9 Langues : Anglais Catégories : 30E15
14E20
34B25
34D15
41A60Mots-clés : monodromie perturbation singulière équation différentielle surface de riemann Note de contenu : index, références Asymptotic behavior of monodromy : singularly perturbed differential equations on a Riemann surface [bibliographie] / Carlos Simpson, Auteur . - Berlin : Springer-Verlag, 1991 . - 139 p.. - (Lecture Note in Mathematics, ISSN 0075-8434; 1502) .
ISBN : 978-3-540-55009-9
Langues : Anglais
Catégories : 30E15
14E20
34B25
34D15
41A60Mots-clés : monodromie perturbation singulière équation différentielle surface de riemann Note de contenu : index, références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 1197 LN 1502 Livre Recherche Salle Disponible
Titre : Homotopy theory of higher categories : from Segal categories to n-categories and beyond Type de document : texte imprimé Auteurs : Carlos Simpson, Auteur Editeur : Cambridge : Cambridge University Press Année de publication : Cop. 2012 Collection : New mathematical monographs num. 19 Importance : VIII-634 p. ISBN/ISSN/EAN : 978-0-521-51695-2 Langues : Anglais Mots-clés : homotopie catégorie Résumé : The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others. Note de contenu : index, références En ligne : http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/ [...] Homotopy theory of higher categories : from Segal categories to n-categories and beyond [texte imprimé] / Carlos Simpson, Auteur . - Cambridge : Cambridge University Press, Cop. 2012 . - VIII-634 p.. - (New mathematical monographs; 19) .
ISBN : 978-0-521-51695-2
Langues : Anglais
Mots-clés : homotopie catégorie Résumé : The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others. Note de contenu : index, références En ligne : http://www.cambridge.org/us/academic/subjects/mathematics/geometry-and-topology/ [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 21663 SIM/18/10075 Livre Recherche Salle Disponible