A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Détail de l'auteur
Auteur Yu I. INGSTER |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Nonparametric goodness-of-fit testing under gaussian models / Yu I. INGSTER (Cop. 2003)
Titre : Nonparametric goodness-of-fit testing under gaussian models Type de document : texte imprimé Auteurs : Yu I. INGSTER, Auteur ; Irina A. SUSLINA, Auteur Editeur : Springer Verlag Année de publication : Cop. 2003 Collection : Lecture notes in statistics num. 169 Importance : XIV-452 p. ISBN/ISSN/EAN : 978-0-387-95531-5 Langues : Anglais Mots-clés : statistique nonparamétrique modèle gaussien Résumé : This book presents the modern theory of nonparametric goodness-of-fit testing. The study is based on an asymptotic version of the minimax approach. The methods for the construction of asymptotically optimal, rate optimal, and optimal adaptive test procedures are developed. The authors present many new results that demonstrate the principal differences between nonparametric goodness-of-fit testing problems with parametric goodness-of-fit testing problems and with non-parametric estimation problems. This book fills the gap in modern nonparametric statistical theory by discussing hypothesis testing.
The book is addressed to mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems that are relevant in signal detection and transmission and in technical and medical diagnostics among others.Note de contenu : index, références Nonparametric goodness-of-fit testing under gaussian models [texte imprimé] / Yu I. INGSTER, Auteur ; Irina A. SUSLINA, Auteur . - [S.l.] : Springer Verlag, Cop. 2003 . - XIV-452 p.. - (Lecture notes in statistics; 169) .
ISBN : 978-0-387-95531-5
Langues : Anglais
Mots-clés : statistique nonparamétrique modèle gaussien Résumé : This book presents the modern theory of nonparametric goodness-of-fit testing. The study is based on an asymptotic version of the minimax approach. The methods for the construction of asymptotically optimal, rate optimal, and optimal adaptive test procedures are developed. The authors present many new results that demonstrate the principal differences between nonparametric goodness-of-fit testing problems with parametric goodness-of-fit testing problems and with non-parametric estimation problems. This book fills the gap in modern nonparametric statistical theory by discussing hypothesis testing.
The book is addressed to mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems that are relevant in signal detection and transmission and in technical and medical diagnostics among others.Note de contenu : index, références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 19085 LNS 169 Livre Recherche Salle Disponible