Titre : | Einstein Manifolds | Type de document : | texte imprimé | Auteurs : | Arthur L. BESSE, Auteur | Editeur : | Berlin : Springer-Verlag | Année de publication : | 2008 | Collection : | Engebnisse der Mathematik und Ihrer Grenzgebiete, ISSN 0071-1136 num. 3/10 | Importance : | XII-516 p. | ISBN/ISSN/EAN : | 978-3-540-74120-6 | Langues : | Anglais | Catégories : | 34C55 53-02 53C21 53C30 54C25
| Mots-clés : | relativité générale variété d'Einstein variété de Kahler variété de Riemann | Résumé : | Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state-of-the-art in this field. Einstein Manifolds is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals. The book is addressed both to research mathematicians, and to graduate students. | Note de contenu : | index, bibliogr. |
Einstein Manifolds [texte imprimé] / Arthur L. BESSE, Auteur . - Berlin : Springer-Verlag, 2008 . - XII-516 p.. - ( Engebnisse der Mathematik und Ihrer Grenzgebiete, ISSN 0071-1136; 3/10) . ISBN : 978-3-540-74120-6 Langues : Anglais Catégories : | 34C55 53-02 53C21 53C30 54C25
| Mots-clés : | relativité générale variété d'Einstein variété de Kahler variété de Riemann | Résumé : | Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state-of-the-art in this field. Einstein Manifolds is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals. The book is addressed both to research mathematicians, and to graduate students. | Note de contenu : | index, bibliogr. |
|  |