Titre : | Operads, algebras, modules and motives | Type de document : | texte imprimé | Auteurs : | I. KRIZ, Auteur ; J. Peter MAY, Auteur | Editeur : | Paris : Société Mathématique de France | Année de publication : | 1995 | Collection : | Astérisque, ISSN 0303-1179 num. 233  | Importance : | 145 p. | Langues : | Anglais | Catégories : | 14A20 18F25 18G99 19D99 19E99 55U99
| Mots-clés : | homotopie algèbre commutative algèbre de Lie | Résumé : | With motivation from algebraic topology, algebraic geometry, and string theory, we study various topics in differential homological algebra. The work is divided in five largely independent parts:
I- Definitions and examples of operads and their actions
II- Partial algebraic structures and conversion theorems
III- Derived categories from a topological point of view
IV - Rational derived categories and mixed Tate motives.
V - Derived categories of modules over E algebras.
In differential algebra, operads are systems of parameter chain complexes for multiplication on various types of differential graded algebras up to homotopy, for example commutative algebras, n-Lie algebras, n-braid algebras, etc. Our primary focus is the development of the concomitant theory of modules up to homotopy and the study of both classical derived categories of modules over DGA's and derived categories of modules up to homotopy over DGA's up to homotopy. Examples of such derived categories provide the appropriate setting for one approach to mixed Tate motives in algebraic geometry, both rational and integral. | Note de contenu : | index, bibliogr. | En ligne : | http://www.math.uchicago.edu/~may/PAPERS/kmbooklatex.pdf |
Operads, algebras, modules and motives [texte imprimé] / I. KRIZ, Auteur ; J. Peter MAY, Auteur . - Paris : Société Mathématique de France, 1995 . - 145 p.. - ( Astérisque, ISSN 0303-1179; 233) . Langues : Anglais Catégories : | 14A20 18F25 18G99 19D99 19E99 55U99
| Mots-clés : | homotopie algèbre commutative algèbre de Lie | Résumé : | With motivation from algebraic topology, algebraic geometry, and string theory, we study various topics in differential homological algebra. The work is divided in five largely independent parts:
I- Definitions and examples of operads and their actions
II- Partial algebraic structures and conversion theorems
III- Derived categories from a topological point of view
IV - Rational derived categories and mixed Tate motives.
V - Derived categories of modules over E algebras.
In differential algebra, operads are systems of parameter chain complexes for multiplication on various types of differential graded algebras up to homotopy, for example commutative algebras, n-Lie algebras, n-braid algebras, etc. Our primary focus is the development of the concomitant theory of modules up to homotopy and the study of both classical derived categories of modules over DGA's and derived categories of modules up to homotopy over DGA's up to homotopy. Examples of such derived categories provide the appropriate setting for one approach to mixed Tate motives in algebraic geometry, both rational and integral. | Note de contenu : | index, bibliogr. | En ligne : | http://www.math.uchicago.edu/~may/PAPERS/kmbooklatex.pdf |
|