A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Détail d'une collection
|
Documents disponibles dans la collection
Affiner la recherche Interroger des sources externes
H [infinity symbol]-optimal control and related minimax design problems / Tamer BASAR (Cop. 1991)
Titre : H [infinity symbol]-optimal control and related minimax design problems : a dynamic game approach Type de document : texte imprimé Auteurs : Tamer BASAR, Auteur ; Pierre BERNHARD, Auteur Editeur : Basel : Birkhäuser Verlag Année de publication : Cop. 1991 Collection : Systems & Control : Foundations & Applications num. 5 Importance : XII-224 p. ISBN/ISSN/EAN : 978-0-8176-3554-1 Langues : Anglais Mots-clés : contrôle optimal optimisation jeu différentiel commande Note de contenu : références H [infinity symbol]-optimal control and related minimax design problems : a dynamic game approach [texte imprimé] / Tamer BASAR, Auteur ; Pierre BERNHARD, Auteur . - Basel : Birkhäuser Verlag, Cop. 1991 . - XII-224 p.. - (Systems & Control : Foundations & Applications; 5) .
ISBN : 978-0-8176-3554-1
Langues : Anglais
Mots-clés : contrôle optimal optimisation jeu différentiel commande Note de contenu : références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 20943 BAS/93/8832 Livre Recherche Salle Disponible Optimal Control / Richard VINTER (Cop. 2000)
Titre : Optimal Control Type de document : texte imprimé Auteurs : Richard VINTER, Auteur Editeur : Basel : Birkhäuser Verlag Année de publication : Cop. 2000 Collection : Systems & Control : Foundations & Applications Importance : XV-507 p. ISBN/ISSN/EAN : 978-0-8176-4075-0 Langues : Anglais Mots-clés : commande optimale principe maximum programmation dynamique contrôle optimal Note de contenu : index, références Optimal Control [texte imprimé] / Richard VINTER, Auteur . - Basel : Birkhäuser Verlag, Cop. 2000 . - XV-507 p.. - (Systems & Control : Foundations & Applications) .
ISBN : 978-0-8176-4075-0
Langues : Anglais
Mots-clés : commande optimale principe maximum programmation dynamique contrôle optimal Note de contenu : index, références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 19681 VIN/49/7973 Livre Recherche Salle Disponible Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations / Martino BARDI (Cop. 1997)
Titre : Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations Type de document : texte imprimé Auteurs : Martino BARDI, Auteur ; Italo CAPUZZO-DOLCETTA, Auteur Editeur : Basel : Birkhäuser Verlag Année de publication : Cop. 1997 Collection : Systems & Control : Foundations & Applications Importance : XVII-570 p. ISBN/ISSN/EAN : 978-0-8176-3640-1 Langues : Anglais Catégories : 35F20
49L20
49L25
90D25Mots-clés : viscosité équation de Hamilton-Jacobi contrôle optimal problème asymptotique Note de contenu : index, bibliogr. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations [texte imprimé] / Martino BARDI, Auteur ; Italo CAPUZZO-DOLCETTA, Auteur . - Basel : Birkhäuser Verlag, Cop. 1997 . - XVII-570 p.. - (Systems & Control : Foundations & Applications) .
ISBN : 978-0-8176-3640-1
Langues : Anglais
Catégories : 35F20
49L20
49L25
90D25Mots-clés : viscosité équation de Hamilton-Jacobi contrôle optimal problème asymptotique Note de contenu : index, bibliogr. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 13978 BAR/49/7456 Livre Recherche Salle Disponible Optimal control theory for infinite dimensional systems / Xunjing LI (cop.1995)
Titre : Optimal control theory for infinite dimensional systems Type de document : texte imprimé Auteurs : Xunjing LI, Auteur ; Jiongmin YONG, Auteur Editeur : Boston : Birkhäuser Année de publication : cop.1995 Collection : Systems & Control : Foundations & Applications Importance : XII-448 p. ISBN/ISSN/EAN : 978-0-8176-3722-4 Langues : Anglais Mots-clés : théorie du contrôle optimisation système linéaire Résumé : Infinite dimensional systems can be used to describe many physical phenomena in the real world. Well-known examples are heat conduction, vibrations of elastic material, diffusion-reaction processes, population systems, and many others. Thus, the optimal control theory for infinite dimensional systems has a wide range of applications in engineering, economics, and some other fields. On the other hand, this theory has its own mathematical interests since it is regarded as a generalization for the classical calculus of variations, and it generates many interesting mathematical questions. The Pontryagin maximum principle, the Bellman dynamic programming method and the Kalman optimal linear quadratic regulator theory are regarded as the three milestones of modern (finite dimensional) control theory. Over the past thirty years, the corresponding theory for infinite dimensional systems has also been developed. The essential difficulties for the infinite dimensional theory come from two aspects: the unboundedness of the differential operator or the generator of the strongly continuous semigroup and the lack of the local compactness of the underlying spaces. The purpose of this book is to introduce optimal control theory for infinite dimensional systems. The authors present the existence theory for optimal controls, the Pontryagin maximum principle, the Bellman dynamic programming principle and the linear quadratic optimal control problems. Some applications are also included in this volume. Note de contenu : index, références Optimal control theory for infinite dimensional systems [texte imprimé] / Xunjing LI, Auteur ; Jiongmin YONG, Auteur . - Basel : Birkhäuser Verlag, cop.1995 . - XII-448 p.. - (Systems & Control : Foundations & Applications) .
ISBN : 978-0-8176-3722-4
Langues : Anglais
Mots-clés : théorie du contrôle optimisation système linéaire Résumé : Infinite dimensional systems can be used to describe many physical phenomena in the real world. Well-known examples are heat conduction, vibrations of elastic material, diffusion-reaction processes, population systems, and many others. Thus, the optimal control theory for infinite dimensional systems has a wide range of applications in engineering, economics, and some other fields. On the other hand, this theory has its own mathematical interests since it is regarded as a generalization for the classical calculus of variations, and it generates many interesting mathematical questions. The Pontryagin maximum principle, the Bellman dynamic programming method and the Kalman optimal linear quadratic regulator theory are regarded as the three milestones of modern (finite dimensional) control theory. Over the past thirty years, the corresponding theory for infinite dimensional systems has also been developed. The essential difficulties for the infinite dimensional theory come from two aspects: the unboundedness of the differential operator or the generator of the strongly continuous semigroup and the lack of the local compactness of the underlying spaces. The purpose of this book is to introduce optimal control theory for infinite dimensional systems. The authors present the existence theory for optimal controls, the Pontryagin maximum principle, the Bellman dynamic programming principle and the linear quadratic optimal control problems. Some applications are also included in this volume. Note de contenu : index, références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 21444 LI/49/10007 Livre Recherche Salle Disponible Set-valued analysis / Jean-Pierre AUBIN (cop. 1990)
Titre : Set-valued analysis Type de document : texte imprimé Auteurs : Jean-Pierre AUBIN, Auteur ; Hélène FRANKOWSKA, Auteur Editeur : Basel : Birkhäuser Verlag Année de publication : cop. 1990 Collection : Systems & Control : Foundations & Applications num. 2 Importance : XIX-461 p. ISBN/ISSN/EAN : 978-0-8176-3478-0 Langues : Anglais Mots-clés : analyse Résumé : Set-valued analysis has increasingly become recognized as an essential mathematical tool in the solution of problems arising in a diverse group of scientific, technical and other academic disciplines. Set-Valued Analysis provides, for the first time, a clear introduction to these new versatile and powerful concepts, placing them firmly in the familiar context of classical analysis, and preparing the reader to utilize directly their unifying and compelling properties.
Nonlinear analysis, nonlinear programming, mathematical economics and management, control theory, biology, systems sciences, artificial intelligence, and many other fields of investigation are rich sources of problems of a set-valued character. The models arising from these problems may lack existence and/or uniqueness in their solutions; further constraints may destroy the familiar regularity requirements; some information on the solution may be known and the coefficients unknown (inverse problems); qualitative data and/or solutions may be preferred to quantitative ones; disturbances and perturbations may have to be taken into account; plain uncertainty may be involved; and so on.Note de contenu : index, bibliogr. Set-valued analysis [texte imprimé] / Jean-Pierre AUBIN, Auteur ; Hélène FRANKOWSKA, Auteur . - Basel : Birkhäuser Verlag, cop. 1990 . - XIX-461 p.. - (Systems & Control : Foundations & Applications; 2) .
ISBN : 978-0-8176-3478-0
Langues : Anglais
Mots-clés : analyse Résumé : Set-valued analysis has increasingly become recognized as an essential mathematical tool in the solution of problems arising in a diverse group of scientific, technical and other academic disciplines. Set-Valued Analysis provides, for the first time, a clear introduction to these new versatile and powerful concepts, placing them firmly in the familiar context of classical analysis, and preparing the reader to utilize directly their unifying and compelling properties.
Nonlinear analysis, nonlinear programming, mathematical economics and management, control theory, biology, systems sciences, artificial intelligence, and many other fields of investigation are rich sources of problems of a set-valued character. The models arising from these problems may lack existence and/or uniqueness in their solutions; further constraints may destroy the familiar regularity requirements; some information on the solution may be known and the coefficients unknown (inverse problems); qualitative data and/or solutions may be preferred to quantitative ones; disturbances and perturbations may have to be taken into account; plain uncertainty may be involved; and so on.Note de contenu : index, bibliogr. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 8006 AUB/52/6286 a Livre Recherche Salle Disponible 8007 AUB/52/6286 b Livre Recherche Salle Disponible 8008 AUB/52/6286 c Livre Recherche Salle Disponible Viability theory / Jean-Pierre AUBIN (cop. 1991)
Permalink