A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Résultat de la recherche
1 résultat(s) recherche sur le mot-clé 'étalon'
Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche Interroger des sources externes
F-crystals, Griffiths transversality, and the Hodge decomposition / Arthur OGUS (1994)
Titre : F-crystals, Griffiths transversality, and the Hodge decomposition Type de document : texte imprimé Auteurs : Arthur OGUS, Auteur Editeur : Paris : Société Mathématique de France Année de publication : 1994 Collection : Astérisque, ISSN 0303-1179 num. 221 Importance : 183 p. Langues : Anglais Catégories : 11G25
14C30
14D07
14F17
14F30Mots-clés : structure logarithmique filtration bifiltration étalon cohomologie cristalline théorème de Mazur Résumé : Pursuing the analogy between variations of Hodge structures in characteristic zero and F-crystals in characteristic p, we introduce and study the category of ``T-crystals", which are the crystalline manifestation of modules with integrable connection and filtration satisfying Griffiths transversality. We construct a functor from the category of F-crystals (or more generally F-spans) to the category of T-crystals, on any smooth logarithmic scheme in characteristic p. This functor is shown to commute with the formation of higher direct images-a generalization of Mazur's fundamental theorem on Frobenius and Hodge filtration to the case of crystalline cohomology with coefficients. Applications include results about Newton and Hodge polygons (``Katz's Conjecture'') and the degeneration of the Hodge spectral sequence (``Hodge Decomposition''), in both cases for the cohomology of a variety with coefficients in an F-crystal. Note de contenu : références F-crystals, Griffiths transversality, and the Hodge decomposition [texte imprimé] / Arthur OGUS, Auteur . - Paris : Société Mathématique de France, 1994 . - 183 p.. - (Astérisque, ISSN 0303-1179; 221) .
Langues : Anglais
Catégories : 11G25
14C30
14D07
14F17
14F30Mots-clés : structure logarithmique filtration bifiltration étalon cohomologie cristalline théorème de Mazur Résumé : Pursuing the analogy between variations of Hodge structures in characteristic zero and F-crystals in characteristic p, we introduce and study the category of ``T-crystals", which are the crystalline manifestation of modules with integrable connection and filtration satisfying Griffiths transversality. We construct a functor from the category of F-crystals (or more generally F-spans) to the category of T-crystals, on any smooth logarithmic scheme in characteristic p. This functor is shown to commute with the formation of higher direct images-a generalization of Mazur's fundamental theorem on Frobenius and Hodge filtration to the case of crystalline cohomology with coefficients. Applications include results about Newton and Hodge polygons (``Katz's Conjecture'') and the degeneration of the Hodge spectral sequence (``Hodge Decomposition''), in both cases for the cohomology of a variety with coefficients in an F-crystal. Note de contenu : références Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 15981 AST 221 Livre Recherche Salle Disponible