A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Résultat de la recherche
21 résultat(s) recherche sur le mot-clé 'géométrie hyperbolique' 




Titre : Éléments de géométrie hyperbolique et applications Type de document : texte imprimé Auteurs : Georges LION, Auteur ; IREM de Limoges, Auteur Editeur : Limoges : IREM de Limoges Année de publication : 1987 Importance : p. Langues : Français Mots-clés : géométrie hyperbolique Note de contenu : bibliogr. En ligne : http://www.irem.unilim.fr/ Éléments de géométrie hyperbolique et applications [texte imprimé] / Georges LION, Auteur ; IREM de Limoges, Auteur . - Limoges : IREM de Limoges, 1987 . - p.
Langues : Français
Mots-clés : géométrie hyperbolique Note de contenu : bibliogr. En ligne : http://www.irem.unilim.fr/ Exemplaires
Code-barres Cote Support Localisation Section Disponibilité i2653 B/LIM/1987 Livre IREM Salle Disponible Géométrie. 5 / Marcel BERGER (Cop. 1977)
Titre : Géométrie. 5 : la sphère pour elle-même, géométrie hyperbolique, l'espace des sphères Type de document : texte imprimé Auteurs : Marcel BERGER, Auteur Editeur : Paris : CEDIC Année de publication : Cop. 1977 Autre Editeur : Paris : Fernand Nathan Importance : 189 p. Présentation : ill. ISBN/ISSN/EAN : 978-2-7124-0705-6 Langues : Français Mots-clés : géométrie hyperbolique sphère Note de contenu : index, bibliogr. Géométrie. 5 : la sphère pour elle-même, géométrie hyperbolique, l'espace des sphères [texte imprimé] / Marcel BERGER, Auteur . - Paris : CEDIC : Paris : Fernand Nathan, Cop. 1977 . - 189 p. : ill.
ISBN : 978-2-7124-0705-6
Langues : Français
Mots-clés : géométrie hyperbolique sphère Note de contenu : index, bibliogr. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité E230 BER/CAE 299-5 b Livre Enseignement Compactus Exclu du prêt i2054 BER/CAE/i2054-5 a Livre Enseignement Salle Exclu du prêt i2054b BER/CAE/i2054b-5 b Livre Enseignement Salle Disponible 9001 BER/51/5119-5 Livre Recherche Salle Disponible Thèmes de géométrie / Michel ALESSANDRI (1999)
Titre : Thèmes de géométrie : Groupes en situation géométrique Type de document : texte imprimé Auteurs : Michel ALESSANDRI, Auteur Editeur : Paris [France] : Dunod Année de publication : 1999 Importance : 254 p. ISBN/ISSN/EAN : 978-2-10-004556-3 Langues : Français Mots-clés : géométrie hyperbolique géométrie vectorielle euclidienne groupe linéaire groupe modulaire Note de contenu : index, bibliogr. Thèmes de géométrie : Groupes en situation géométrique [texte imprimé] / Michel ALESSANDRI, Auteur . - Paris (France) : Dunod, 1999 . - 254 p.
ISBN : 978-2-10-004556-3
Langues : Français
Mots-clés : géométrie hyperbolique géométrie vectorielle euclidienne groupe linéaire groupe modulaire Note de contenu : index, bibliogr. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité E1352 ALE/CAE 1100 Livre Enseignement Salle Exclu du prêt E571 ALE/CAE 526 Livre Enseignement Salle Disponible E650 ALE/CAE 596 Livre Enseignement Salle Disponible Théorie des groupes. Cours 1980-1981 (Monsieur Lyndon) / A. BOIDIN (1981)
Titre : Théorie des groupes. Cours 1980-1981 (Monsieur Lyndon) : Groupes et géométrie Type de document : preprint Auteurs : A. BOIDIN, Auteur ; A. FROMAGEOT, Auteur ; R. LYNDON, Auteur Editeur : Université de Picardie, U.E.R de Mathématiques Année de publication : 1981 Importance : 245 p. Langues : Français Mots-clés : théorie des groupes symétrie groupe cristallographique géométrie projective groupe fuchsien géométrie inversible géométrie hyperbolique représentation matricielle symétrie du plan Théorie des groupes. Cours 1980-1981 (Monsieur Lyndon) : Groupes et géométrie [preprint] / A. BOIDIN, Auteur ; A. FROMAGEOT, Auteur ; R. LYNDON, Auteur . - [S.l.] : Université de Picardie, U.E.R de Mathématiques, 1981 . - 245 p.
Langues : Français
Mots-clés : théorie des groupes symétrie groupe cristallographique géométrie projective groupe fuchsien géométrie inversible géométrie hyperbolique représentation matricielle symétrie du plan Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 20191 BOI/20/TAF 697 Livre Recherche Salle Disponible Why are braids orderable ? (2002)
Titre : Why are braids orderable ? Type de document : texte imprimé Editeur : Paris : Société Mathématique de France Année de publication : 2002 Collection : Panoramas et Synthèses, ISSN 1272-3835 num. 14 Importance : XIII-190 p. ISBN/ISSN/EAN : 978-2-85629-135-1 Langues : Anglais Mots-clés : algèbre auto-distributive arbre fini théorie combinatoire des groupes groupe de difféomorphisme lamination géométrie hyperbolique tressé Résumé : Pourquoi les tresses sont-elles ordonnables ?
Environ dix ans ont passé depuis la découverte du caractère ordonnable des groupes de tresses, et des méthodes diverses ont été proposées pour expliquer le phénomène. Le but de ce texte est de présenter ces approches variées, qui mettent en jeu l'algèbre auto-distributive, les arbres finis, la théorie combinatoire des groupes, les groupes de difféomorphismes, la théorie des laminations, et la géométrie hyperbolique.Note de contenu : index, bibliogr. Why are braids orderable ? [texte imprimé] . - Paris : Société Mathématique de France, 2002 . - XIII-190 p.. - (Panoramas et Synthèses, ISSN 1272-3835; 14) .
ISBN : 978-2-85629-135-1
Langues : Anglais
Mots-clés : algèbre auto-distributive arbre fini théorie combinatoire des groupes groupe de difféomorphisme lamination géométrie hyperbolique tressé Résumé : Pourquoi les tresses sont-elles ordonnables ?
Environ dix ans ont passé depuis la découverte du caractère ordonnable des groupes de tresses, et des méthodes diverses ont été proposées pour expliquer le phénomène. Le but de ce texte est de présenter ces approches variées, qui mettent en jeu l'algèbre auto-distributive, les arbres finis, la théorie combinatoire des groupes, les groupes de difféomorphismes, la théorie des laminations, et la géométrie hyperbolique.Note de contenu : index, bibliogr. Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 19157 PS 14 Livre Recherche Salle Disponible Complex Analysis: the geometric viewpoint / Steven G. KRANTZ (Cop. 1990)
PermalinkErgodic theory, symbolic dynamics, and hyperbolic spaces / Tim BEDFORD (1991)
PermalinkFoundations of hyperbolic manifolds / John G. RATCLIFFE (Cop. 1994)
PermalinkFuchsian groups / Svetlana KATOK (Cop. 1992)
PermalinkHyperbolic geometry / James W. ANDERSON (Cop. 2001)
Permalink